GaAs MES FET **NE6500496**

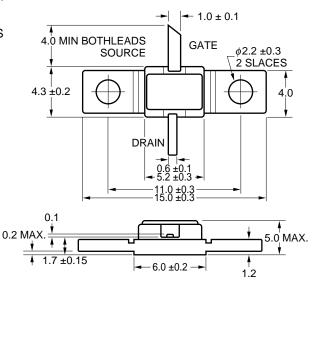
4 W L, S-BAND POWER GaAs FET N-CHANNEL GaAs MES FET

DESCRIPTION

NEC

The NE6500496 is power GaAs FET which provides high gain, high efficiency and high output power in L, S band.

To reduce thermal resistance, the device has a PHS (Plated Heat Sink) structure.


FEATURES

- Class A operation
- High output power: 36 dBm (typ)
- High gain: 11.5 dB (typ)
- High power added efficiency: 45 % (typ)
- Hermetically sealed ceramic package

ABSOLUTE MAXIMUM RATINGS (T_A = 25 $^{\circ}$ C)

Drain to Source Voltage	Vdsx	15	V
Gate to Drain Voltage	Vgdx	-18	V
Gate to Source Voltage	Vgsx	-12	V
Drain Current	ld	4.5	А
Gate Current	lg	25	mA
Total Power Dissipation	P⊤(*)	25	W
Channel Temperature	T_{ch}	175	°C
Storage Temperature	Tstg	-65 to +175	°C
Temperature Cycling	T∞	-40 to +120	°C
		* Tc = 25 °C	

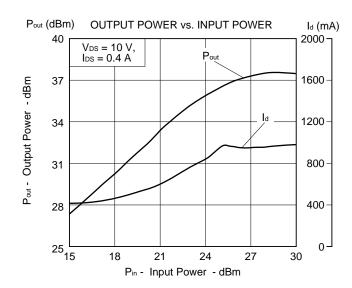
PACKAGE DIMENSION (UNIT: mm)

Caution Please handle this device at a static-free workstation, because this is an electrostatic sensitive device.

MAXIMUM OPERATION RANDGE

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Drain to Source Voltage	Vds	-	10	10	V
Channel Temperature	Tch	-	-	130	°C
Input Power	Gcomp	-	-	3	dBcomp
Gate Resistance	Rg	-	-	200	Ω

ELECTRICAL CHARACTERISTICS (T_A = 25 °C)


CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Saturated Drain Current	ldss	1.0	2.3	3.5	А	Vds = 1.5 V, Vgs = 0 V
Pinch-off Voltage	Vp	-3.5	-2.0	-0.5	V	Vds = 2.5 V, Ids = 15 mA
Transconductance	gm	-	1300	-	mS	Vds = 2.5 V, Ids = 1 A
Thermal Resistance	Rth	I	6.0	6.5	°C/W	channel to case

PERFORMANCE SPECIFICATIONS (T_A = 25 $^{\circ}$ C)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Output Power	Pout	35.5	36.0	-	dBm	f = 2.3 GHz, Vds = 10 V
Gate to Source Current	lgs	-5	-	5	mA	lds ≤ 0.4 A, Pin = 26.0 dBm
Power Added Efficiency	η add	-	45	-	%	Rg = 200 Ω
Linear Gain	G∟	11.0	11.5	-	dB	Pin ≤ 20 dBm (*)

* The other are the same as the above conditions.

TYPICAL CHARACTERISTICS (T_A = 25 $^{\circ}$ C)

S-PARAMETER

 $V_{DS} = 9.0 \text{ V}, \text{ Ids} = 400 \text{ mA}, \text{ Vgs} = -1.619 \text{ V}, \text{ Ig} = 0.0 \text{ mA}$

FREQUENCY	S	11	S 21		S 12		S 22	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
0.400	0.070	00.0	47.044	407.4	0.040	00.0	0.040	470.0
0.100	0.978	-80.0	17.314	137.4	0.010	60.2	0.612	-172.8
0.200	0.957	-118.9	11.458	116.5	0.015	36.4	0.667	-175.2
0.300	0.951	-137.8	8.252	105.7	0.016	30.0	0.687	-177.6
0.400	0.949	-148.5	6.388	98.8	0.016	29.0	0.695	-179.7
0.500	0.947	-155.4	5.188	93.9	0.017	29.1	0.700	178.8
0.600	0.947	-160.2	4.368	90.0	0.017	27.5	0.704	177.4
0.700	0.946	-163.9	3.769	86.6	0.017	29.5	0.705	176.2
0.800	0.946	-166.8	3.319	83.6	0.018	31.0	0.707	175.1
0.900	0.946	-169.2	2.963	80.8	0.018	32.8	0.709	174.0
1.000	0.945	-171.2	2.679	78.2	0.019	33.7	0.710	173.0
1.100	0.945	-173.1	2.438	75.5	0.020	34.9	0.711	172.2
1.200	0.946	-174.5	2.251	73.4	0.020	35.7	0.711	171.2
1.300	0.945	-175.9	2.087	71.2	0.021	36.8	0.714	170.3
1.400	0.944	-177.1	1.947	69.0	0.021	38.6	0.715	169.4
1.500	0.945	-178.2	1.828	67.0	0.022	39.5	0.716	168.5
1.600	0.944	-179.4	1.720	64.7	0.023	40.5	0.715	167.5
1.700	0.943	179.6	1.627	62.6	0.024	41.8	0.716	166.2
1.800	0.944	178.6	1.547	60.5	0.024	41.8	0.721	165.4
1.900	0.943	177.7	1.468	58.7	0.025	43.8	0.718	164.5
2.000	0.944	176.8	1.404	56.4	0.026	43.8	0.719	163.2
2.100	0.944	175.9	1.345	54.6	0.027	45.8	0.722	162.0
2.200	0.945	175.2	1.296	52.7	0.028	46.4	0.728	161.1
2.300	0.945	174.3	1.245	50.8	0.030	47.4	0.725	160.4
2.400	0.945	173.5	1.201	48.6	0.031	45.8	0.726	158.7
2.500	0.944	172.7	1.163	46.8	0.031	47.2	0.734	157.4
2.600	0.944	172.0	1.131	45.2	0.034	49.1	0.742	156.8
2.700	0.945	171.2	1.087	43.7	0.035	48.7	0.737	156.1
2.800	0.947	170.4	1.054	41.6	0.036	47.5	0.738	154.5
2.900	0.947	169.6	1.028	39.6	0.037	46.7	0.745	153.3
3.000	0.946	168.7	1.008	37.7	0.039	47.2	0.757	152.3
3.500	0.947	164.9	0.901	29.5	0.046	46.8	0.766	148.8
4.000	0.950	160.5	0.840	20.9	0.056	41.3	0.771	144.2
4.500	0.941	155.3	0.810	11.9	0.059	37.4	0.776	138.0
5.000	0.933	149.6	0.795	1.5	0.069	33.4	0.792	130.8

 $V_{DS} = 10.0 V$, $I_{DS} = 400 mA$, $V_{GS} = -1.662 V$, $I_{G} = 0.0 mA$

FREQUENCY	, s	511	S 21		S 12		S 22		
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	
0.100	0.975	-80.1	17.360	137.5	0.011	55.3	0.601	-172.5	
0.200	0.956	-118.9	11.506	116.5	0.015	39.8	0.657	-175.0	
0.300	0.951	-137.7	8.292	105.6	0.016	30.2	0.678	-177.5	
0.400	0.949	-148.4	6.420	98.7	0.016	28.9	0.687	-179.5	
0.500	0.947	-155.3	5.212	93.8	0.017	26.7	0.692	178.9	
0.600	0.946	-160.1	4.388	89.8	0.017	26.5	0.695	177.7	
0.700	0.946	-163.8	3.786	86.4	0.018	28.9	0.697	176.4	
0.800	0.945	-166.8	3.333	83.4	0.018	30.9	0.698	175.3	
0.900	0.945	-169.1	2.977	80.5	0.018	32.2	0.700	174.2	
1.000	0.945	-171.2	2.691	77.9	0.019	32.4	0.702	173.3	
1.100	0.944	-173.1	2.448	75.2	0.020	32.7	0.703	172.4	
1.200	0.945	-174.5	2.260	73.0	0.020	35.5	0.703	171.4	
1.300	0.944	-175.8	2.096	70.8	0.021	36.6	0.706	170.5	
1.400	0.943	-177.1	1.955	68.6	0.021	37.8	0.708	169.7	
1.500	0.944	-178.2	1.834	66.5	0.022	38.5	0.708	168.9	
1.600	0.943	-179.4	1.726	64.2	0.022	40.0	0.707	167.8	
1.700	0.943	179.6	1.632	62.1	0.024	41.6	0.710	166.6	
1.800	0.943	178.6	1.552	60.0	0.024	41.7	0.714	165.7	
1.900	0.943	177.7	1.474	58.1	0.025	44.3	0.711	164.9	
2.000	0.944	176.8	1.408	55.8	0.026	43.4	0.712	163.5	
2.100	0.943	176.0	1.348	53.9	0.027	45.6	0.716	162.4	
2.200	0.945	175.2	1.299	52.0	0.028	46.1	0.721	161.5	
2.300	0.944	174.3	1.248	50.2	0.030	47.1	0.719	160.8	
2.400	0.944	173.5	1.203	48.0	0.031	46.0	0.720	159.1	
2.500	0.944	172.7	1.166	46.2	0.031	46.0	0.728	157.9	
2.600	0.944	171.9	1.132	44.5	0.033	47.5	0.736	157.2	
2.700	0.945	171.2	1.089	42.9	0.034	48.6	0.733	156.6	
2.800	0.946	170.4	1.055	40.8	0.036	46.6	0.732	155.0	
2.900	0.947	169.6	1.029	38.9	0.037	46.8	0.741	153.7	
3.000	0.945	168.7	1.008	36.9	0.039	46.7	0.753	152.9	
3.500	0.947	165.0	0.901	28.7	0.046	47.0	0.761	149.2	
4.000	0.950	160.5	0.838	20.0	0.056	41.3	0.769	144.6	
4.500	0.940	155.3	0.806	10.9	0.059	37.3	0.775	138.6	
5.000	0.933	149.6	0.792	0.4	0.068	34.0	0.791	131.2	

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11